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TRANSPORT EQUATIONS FOR A FIBROUS CONSOLIDATABLE MATERIAL 
AND THE NEAR-WALL LAYER EFFECT* 

N.N. KALININ and B.M. NULLER 

The motion of a consolidatable two-phase rod, a fluid-saturated solid 
elastic porous cylinder, is examined in a cylindrical tube. The effect 
of the formation and evolution of a near-wall layer is explained 
qualitatively on the basis of this model. Formulas for the layer thick- 
ness and the pore pressure and obtained from the consolidation equations 
in one limiting case. 

Unlike hydraulic transport at low concentrations, the transport of 
highly-concentrated fibrous materials containing 6-25% solid substance 
/l-3/ is realized because of the origination of a fluid near-wall layer 
which reduces the drag tenfold. The theory of this kind of transport 
has not yet been developed, and existing hydraulic transport models of 
low-concentration suspensions are not acceptable for this purpose. A 
highly-concentrated fibrous material is described below by the consolida- 
tion equations in the linear approximation. 

1. The theory of linear and non-linear consolidation was developed principally in 
connection with questions of soil mechanics /4-8/. Without taking account of the bulk forces 
the linear equations of consolidation of a two-phase isotropic porous medium have the form 

/5/ 
G,Au f G, (1 - ZY$1 grad div u f (HI - f)grad p = L (1.1) 
aR/at - kAp = 0, 9 = H, div u -I- (8, f HOP 

Here u is the elastic displacement vector, v1 is Poisson's ratio, G, is the shear modulus, 
k is the filtration coefficient of the porous medium, p is the fluid pressure in its pores, 
t is the time, f is the porosity, i.e., the magnitude of the intercommunication pore Volume 
per unit volume of the porous medium, the other closed pores are considered to be part of 
the solid phase of the skeleton (they substantially diminish the elastic moduli of both the 
solid phase and the medium as a whole), 0 is the change in fluid content per unit volume of 
the medium, and Hi (i= 1,2,3,4) are the volume strain parameters of the porous medium, its 
liquid and solid phases. 
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Knowing the four scalar functions satisfying the four Eqs.(l.l), the fluid filtration 
velocity Y in the porous medium relative to the solid phase can be found from the Darcy 
formula v =m --7i gradp, and the elastic stress tensor is determined by a generalized Hooke's 
law. The physical quantities mentioned are expressed in cylindrical coordinates in the foxm 

The stress or etc., is understood to be the magnitude of the normal or tangential forces 
applied to unit area of the porous medium; the stresses in the skeleton are il -j)-' times 
greater. 

Several experiments are proposed /6/ to measure the parametersHi and the following 
relations have been obtained: HI--: c+ f--1, Ha== i-c. H, = --If,r,-1, and E- cIcz-*. Here C$ and cZ 
are the coefficients of volume compression of the porous medium as an open system and solid 
phase material; cl<cz. The gas contained in the fluid and in the pores of the solid substance 
is not considered as a separate phase. It is assumed that the fluid is incompressible 
compared with the gas it contains and consequently, the compressibility of the liquid gas- 
saturated phase is determined by the linear compressibility of the gas, i.e., ifi,== fopo-‘, where 
jO is the fraction of the gas phase in the porous medium at a total atmospheric pressure PO+ 
corresponding to the pore pressure p== U. Since r<l -I, then iI,< and Hi>0 for i ;; 2. 

2. We examine the mechanism of rod formation and consolidation in different sections 
of the pipeline. New visual observations and test-stand measurements /3/ are used in selec- 
tingthemodelbeing proposed and, in particular, the boundary conditions written down below 
together with the results in /l-3/. 

Tests showed that in connection with the high air content in highly-concentrated material 
(cellulose fiber in water) , the pressure from the pump is transmitted initially just to its 
skeleton to produce large compressive stresses. The skeleton is compressed under the action 
of these stresses, acquires a rod shape at the entrance section of the tube and elastic 
properties, and part ofthetotal pressure is perceived by the fluid. The boundary pores are 
closed by the tube wall and fluid does not flow out of the rod, consequently, the process of 
equilibration of the pressure p starts in the sections t = const. Therefore, the rod can be 
directly adjacent to the walls at the initial section of the tube. Since the walls are not 
deformable and the rod moves along the z axis at a velocity (z:>O without rotating in ~6, 
the usual contact conditions of ultimate friction hold in this section 

UT -: ---Y, TIT2 :- XfJt.T r,i = 0, VI. =- 0 (r = 10 (2.1) 

Here R is the tube inner radius, E>O is the elastic radial clearance of the rod 
determined by the kind of pump and the shape of the entrance end of the tube, x>O is the 
coefficient of friction between the rod and the tube wall, which depends on the kind and 
concentration of the fibre and the wall roughness; the filtration condition vr= 0 means 
that the boundary pores are squeezed compactly to the tube and closed by its wall. If the 
fibre concentration or the clearance E are too large, conditions (2.1) can turn out to be 
valid along the whole length of the tube; then because of the large lateral friction forces 
of the rod, transport will become impossible. However, as observations show, even for a 25% 
concentration of fibrous material a near-wall fluid layer is formed behind a short initial 
section between the rod and the tube wall as a result of consolidation of the porous medium. 
Its thickness increases initially , then remains constant, and finally in the absence of end- 
face constraint decreases to zero as water is absorbed by the decompressing rod. Therefore, 
conditions (2.1) again hold at the exist section of the pipeline for free efflux of the 
fibrous mass at the endface. 

Let us consider thereasonsforthe formation of the fluid near-wall layer. For given 
boundary conditions at the endfaces of the rod or its individual sections the boundary value 
problem (l.l), (1.21, (2.1) has a unique solution but it cannot always be realized physically. 
Indeed, under ultimate friction conditions the fluid will not flow out of the rod (lj, :== 0) 

except in the case when the boundary pores are covered compactly by the tube walls and the 
pore walls are squeezed sufficiently to the tube, when the inequality uI. < - (1 -jf)~ holds. 

If the pore fluid turns out to be under greater pressure than the contact stresses in 
the skeleton (j - l)-'cs,, it penetrates between the tube walls and the pores and squeezing the 
rod from the tube wall, starts to increase and fill the gas that appears. Three conditions 
play an important part in the process of near-wall layer formation described: a) the force 
factor 0, = (f - Up: b) the connectedness of the skeleton for r<K, and c) the lack of 
connectedness (adhesion force) between the skeleton and the tube for I- I<. Conditions b) and 
c) constrain the properties of materials transportable with the formation of the near-wall 
layer; for o,>(j-1)p condition a) makes the problem (l.l), (1.2), (2.1) physically incorrect 
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and requires that conditions (2.1) be replaced by contact boundary conditions between the rod 
and the near-wall layer. Observations in a transparent tube showed that the near-wall layer 
is a system of deep winding grooves on the rod surface, whose edges are close to the tube 
walls and partially abut it. The fluid flows along the grooves and over them in thelaminar 
mode, towards lower pressures, and contains a signficant percentage of air in the bubbles 
whose diameters are comparable with the layer thickness and exert noticeable resistance to 
the motion. The fluid pressure p=p(z,R) in the main section of the layer falls linearly 
as 2 increases, while the flow velocity is constant and depends only slightly on a. 

Therefore, to a first approximation the flow in the layer can be considered to obey 
the Darcy law 

w = - k, grad p (2.2) 

where w is a two-dimensional vector of the mean fluid velocity relative to a rod with the 
components lu,and 1~~, and k, is the filtration coefficient in the layer and p = p (2, R). The 
equations of continuity and state are 

d WW = 0, P = x @) (2.3) 

where p is the density are the aerated fluid, AQ is its volume element, x(p) is a function 
of the pressure and together with (2.2) determine completely the fluid motion in the layer. 

As a increases the velocity wz falls, the layer thickness grows, and the drag in the tube 
drops. This is explained by the rise in the Couette flow velocity directed opposite to the 
flow generated by the pressure drop. In this case the Navier-Stokes equation must be used 
instead of (2.2). 

The boundary conditions for the elastic components in the consolidation equations have 
the form 

9 = - (I- 0~. %rz = PawJar, 77q = 0 tr = R) (2.4) 

where p is the fluid coefficient of viscosity, the second condition is taken in the Beavers- 
Joseph form /8/, and the function aw& is determined on the boundary between the rod and the 
near-wall layer. The missing boundary condition for the filtration components can always be 
obtained from (2.2) and (2.3) by writing them for velocities, pressures, and densities averaged 
over the layer thickness. 

3. We examine one elementary solution of problem (l.l), (1.2) ,(2.2), (2.4) _by assuming 
that consolidation of the fibrous material terminates in the section O\i rf R,O<z< 1,p= const, 
the outflowing fluid remainsin the near-wall layer of this section, there is no friction in 
the layer and no initial rod tension y=c=O. Such conditions are satisfied in a compression 
device with impermeable walls and, approximately, in the middle part of the pipeline section. 
Let the magnitude of the rod compression 6>0 be given 

l&,=-66, trl='az=O @=I), u~=T~~=T (IT =O (z=O), O<r<R (3.') 

Find the thickness of the fluid near-wall layer h= -I+ for r= R. If p= conat, then the 
first equation in (1.1) goes over into the Lame equation, the second equation in (1.1) and 
codition (2.2) are satisfied identically. To satisfy the boundary conditions (2.4) and (3.1) 
we take the following axisymmetric solution of the elasticity theory problem: up = 0, up = (a + 
&)r, Ilz = -62. Determining the constant A and p from the first condition in (2.4) and the 
conditionforthe displaced fluid volume --nR% being equal to the near-wall layer volume -2nSu,, 
we obtain by virtue of (1.1) and (1.2) 

h = R6 [(i - c)(l - 2~~) + 3~~ (f - c,H,)l/N 

p = 36c, [(i - c)(1 - Zv,) + 2vl]/N, N = 3 (cz& - H,) i 2 (1 + %)c 
(3.2) 

(3.3) 

In the denominators and in the numerator of (3.3) each component is positive, only the 
first component in the numerator of (3.2) is positive. Therefore, p>O, and the formulation 
of the near-wall layer (h>O) depends on relationships between %,f,~,cp.S4. If vl= 0, then 
the layer is formed for any other parameters of the problem. Its thickness is proportional 
to R and 6, and increases as yl, Ha1 CZ decrease and as f increases. 

4. The results of an analysis of the transport model considered agree qualitatively with 
test data. Unlike the hydraulic transport of low-concentration material with a parabolic 
velocity distribution diagram corresponding to Poiseuille flow, the fluid had a higher velocity 
in the near-wall layer than the rod w,>O over the whole range of rod velocities a in our 
tests. This also follows from condition (2.2). The drop in pipeline drag as R increases /2/ 
can be explained by the fact that according to (3.2) the quantity h is proportional to R. 
The observable stable increase in the layer thickness h as the pressure p and the longitudinal 
strains 6 increase is in agreement with (3.2) and (3.3). Finally, the drop in drag when air 
is injected into the pipeline /2/ follows from (3.2) as h increases for a decrease in ct and 
an increase in f. 
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ON A DYNAMIC CONTACT PROBLEK FOR A SINGLE ELECTRODE* 

T.V. RYZHKOVA 

The dynamic problem of surface-wave excitation by the main element of 
electrode transducers, a single electrode simulated by a strip stamp 
lying freely on the surface of a piezoelectric half-space, is considered. 
The vertical component of the displacement and the electrical potential 
is given in the contact region , while the surface outside this region has 
no electrical and mechanical loads. The boundary value problem of 
electroelasticity mentioned reduces to investigating a system of in- 
homogeneous Fredholm type integral equations of the first kind in the 
unknown normal stress and charge distribution density functions. 

The regularization method for the system of integral equations obtained is based on 
constructing the factorization of the kernel matrix-function and enables the system of integral 
equations of the first kind to be reduced to a system of integral equations of the second kind 
with a completely continuous operator for which separation into finite-dimensional and small 
terms is effective. Solutions are obtained for this system, that describe the behaviour of 
the contact stresses and the charge distribution density on the electrode, as well as the 
displacement and potential wave fields on the free piezoelectric surface, with the assignment 
of the electrical and mechanical perturbations taken into account. The absolute values of 
the deviation of the excited wave phase velocity from the Rayleigh wave velocity are computed 
at given points on the ST-cut surface of a piezoelectric quartz crystal. 

Approaches developed earlier for constructing approximate solutions of the problems of 
the excitation and interaction of surface waves with metallic electrodes are based, as a rule, 
on the assumption of the weightlessness of the electrodes without taking account of the 
influence of the mechanical perturbations and the nature of the contact with the medium /l-3/. 
At high frequencies as well as during examination of resonators these factors are of no little 
importance. 

1. We introduce an 0x,x,+ coordinate system and we assume that the crystal occupies the 
domain Q G 0;~~ is the wave propagation direction and the electrode dimensions along the x2 
axis are infinite. 
l Prikl.Matem.Mekhan.51,3,525-528,1987 


